But it doesn't have to end here! Sign up for the 7-day coding interview crash course and you'll get a free Interview Cake problem every week.
You're in!
Write a function to find the 2nd largest element in a binary search tree.
Here's a sample binary tree node class:
Our first thought might be to do an in-order traversal of the BST and return the second-to-last item. This means looking at every node in the BST. That would take time and space, where h is the max height of the tree (which is lg(n) if the tree is balanced, but could be as much as n if not).
We can do better than time and space.
We can do this in one walk from top to bottom of our BST. This means time (again, that's if the tree is balanced, otherwise).
A clean recursive implementation will take space in the call stack, but we can bring our algorithm down to space overall.
Log in or sign up with one click to get immediate access to free mock interview questions
We'll never post on your wall or message your friends.
Actually, we don't support password-based login. Never have. Just the OAuth methods above. Why?
Log in or sign up with one click to get immediate access to free mock interview questions
We'll never post on your wall or message your friends.
Actually, we don't support password-based login. Never have. Just the OAuth methods above. Why?
We're doing one walk down our BST, which means time, where h is the height of the tree (again, that's if the tree is balanced, otherwise). space.
Log in or sign up with one click to get immediate access to free mock interview questions
We'll never post on your wall or message your friends.
Actually, we don't support password-based login. Never have. Just the OAuth methods above. Why?
Wanna review this one again later? Or do you feel like you got it all?
Mark as done Pin for review laterReset editor
Powered by qualified.io